Ders Adı | Kodu | Yerel Kredi | AKTS | Ders (saat/hafta) | Uygulama (saat/hafta) | Laboratuar (saat/hafta) |
---|---|---|---|---|---|---|
Diferansiyel Denklemler | MAT2411 | 4 | 6 | 4 | 0 | 0 |
Önkoşullar | Yok |
---|
Yarıyıl | Güz |
---|
Dersi Sunan Akademik Birim | Matematik Bölümü |
---|---|
Dersin Koordinatörü | Elif Demir |
Dersi Veren(ler) | Erdoğan Mehmet Özkan, Nuran Güzel, Selmahan Selim, Erdal Gül, Ayten Özkan, Filiz Kanbay, Yonca Sezer, Adem Cengiz Çevikel, Özgür Yıldırım, S. Ebru Daş, Servet Es, Özlem Bakşi, Seda Çalışkan, Mutlu Akar, Serpil Karayel, Elif Demir |
Asistan(lar)ı |
Dersin Amacı | Matematiksel düşünceyi geliştirmek ve Matematik, fizik ve mühendislikte karşılaşılan problemleri çözebilmek. |
---|---|
Dersin İçeriği | Diferansiyel Denklemlerin ,Tanımı ve Sınıflandırılması, Diferansiyel Denklemin Mertebesi ve Derecesi, Diferansiyel Denklemlerin Çözümleri: İntegral Eğrisi, Kapalı-Açık Çözüm, Özel Çözüm,Genel Çözüm,Tekil Çözüm, Başlangıç Değer Problemi. Diferansiyel Denklemlerin Elde Edilişi. Birinci Mertebe Diferansiyel Denklemler: Değişkenlerine Ayrılabilir Diferansiyel Denklemler, Değişkenlerine Ayrılabilen Diferansiyel Denklemlere Dönüştürülebilen Diferansiyel Denklemler. Homojen Fonksiyonlar, Homojen Diferansiyel Denklemler, Homojen hale Dönüştürülebilen Diferansiyel Denklemler, Lineer Denklemler, İntegrasyon Çarpanları Metodu, Parametrelerin Değişimi Metodu, Bernoulli Diferansiyel Denklemleri, Tam Diferansiyel Denklemler ve İntegrasyon Çarpanları, Tek Değişkeni İçeren İntegrasyon Çarpanları Metodu, Riccati Diferansiyel Denklemleri, Birinci Mertebe Yüksek Dereceden Diferansiyel Denklemlerden Clairaut ve Lagrange Denklemleri. Yüksek Mertebe Lineer Diferansiyel Denklemler: Sabit Katsayılı Homojen Diferansiyel Denklemler, Karakteristik Denklem, Lineer Homojen Denklemlerin Genel Çözümleri, Lineer Bağımsızlık ve Wronskian Determinantı. Karakteristik Denklemin Kompleks Kökleri, Reel Değerli Çözümleri, Tekrarlanan Kökler, Homojen Olmayan Denklemler. Belirsiz Katsayılar Metodu, Parametrelerin Değişimi(Sabitin Değişimi-Lagrange) Metodu. Değişken Katsayılı Euler Diferansiyel Denklemi. Bazı Özel İkinci Mertebe Diferansiyel Denklemler: Bağımlı Değişkeni İçermeyen Diferansiyel Denklemler, Bağımsız Değişkeni İçermeyen Diferansiyel Denklemler. İkinci Mertebe Lineer Diferansiyel Denlemlerin Serilerle Çözümleri: Kuvvet Serilerinin Kısa Tekrarı , Bir Adi Nokta Civarında Serilerle Çözüm. Laplace Dönüşümü, Laplace Dönüşümünün Tanımı, Ters Laplace Dönüşümü, Ters Laplace Dönüşümünün Tanımı, Başlangıç Değer Problemlerinin Laplace Dönüşümü Yardımıyla Çözümü. Birinci mertebeden lineer diferansiyel denklem sistemleri: Yok etme ve Determinant metodu. |
Ders Kitabı / Malzemesi / Önerilen Kaynaklar |
|
Opsiyonel Program Bileşenleri | Yok |
Ders Öğrenim Çıktıları
- Öğrenciler matematiksel düşünceyi geliştirmeyi öğrenecektir.
- Öğrenciler diferansiyel denklemlerini çözebilme becerisi sağlamayı öğrenecektir.
- Öğrenciler matematik, Fizik ve mühendislikte karşılaşılan problemleri çözebilmeyi öğrenecektir
- Öğrenciler bilimsel araştırmalarda kullanılmak üzere bir yöntem kazandırmayı öğrenecektir
- Öğrenciler birçok matematiksel problemlerin diferansiyel denklem modelini kurarak çözümünü öğrenecektir.
Ders Öğrenim Çıktısı & Program Çıktısı Matrisi
DÖÇ-1 | DÖÇ-2 | DÖÇ-3 | DÖÇ-4 | DÖÇ-5 | |
PÇ-1 | 5 | 5 | 5 | 5 | 5 |
PÇ-2 | - | - | - | - | - |
PÇ-3 | - | - | - | - | - |
PÇ-4 | - | - | - | - | - |
PÇ-5 | - | - | - | - | - |
PÇ-6 | - | - | - | - | - |
PÇ-7 | - | - | - | - | - |
PÇ-8 | - | - | - | - | - |
PÇ-9 | - | - | - | - | - |
PÇ-10 | - | - | - | - | - |
PÇ-11 | - | - | - | - | - |
PÇ-12 | - | - | - | - | - |
PÇ-13 | - | - | - | - | - |
PÇ-14 | - | - | - | - | - |
PÇ-15 | - | - | - | - | - |
PÇ-16 | - | - | - | - | - |
PÇ-17 | - | - | - | - | - |
PÇ-18 | - | - | - | - | - |
PÇ-19 | - | - | - | - | - |
PÇ-20 | - | - | - | - | - |
PÇ-21 | - | - | - | - | - |
PÇ-22 | - | - | - | - | - |
PÇ-23 | - | - | - | - | - |
PÇ-24 | - | - | - | - | - |
PÇ-25 | - | - | - | - | - |
PÇ-26 | - | - | - | - | - |
PÇ-27 | - | - | - | - | - |
PÇ-28 | - | - | - | - | - |
PÇ-29 | - | - | - | - | - |
PÇ-30 | - | - | - | - | - |
Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları
Hafta | Konular | Ön Hazırlık |
---|---|---|
1 | Diferansiyel Denklemlerin ,Tanımı ve Sınıflandırılması, Diferansiyel Denklemin Mertebesi ve Derecesi,Diferansiyel Denklemlerin Çözümleri: İntegral Eğrisi, Kapalı-Açık Çözüm, Özel Çözüm,Genel Çözüm,Tekil Çözüm, Başlangıç Değer Problemi. Diferansiyel Denklemlerin Elde Edilişi | Ders Kitabı 1(Bölüm 1 ) |
2 | Birinci Mertebe Diferansiyel Denklemler: Değişkenlerine Ayrılabilir Diferansiyel Denklemler, Değişkenlerine Ayrılabilen Diferansiyel Denklemlere Dönüştürülebilen Diferansiyel Denklemler, Homojen Fonksiyonlar, Homojen Diferansiyel Denklemler, Homojen Hale Dönüştürülebilen Diferansiyel Denklemler. | Ders Kitabı 1(Bölüm 2) |
3 | Tam Diferansiyel Denklemler, Tek Değişkeni içeren İntegrasyon çarpanları metodu. | Ders Kitabı 1(Bölüm 2) |
4 | Lineer Denklemler, İntegrasyon Çarpanları Metodu, Parametrelerin Değişimi Metodu, Bernoulli Diferansiyel Denklemi. | Ders Kitabı 1(Bölüm 2) |
5 | Riccati Diferansiyel Denklemi. Birinci Mertebe Yüksek Dereceden Diferansiyel Denklemler: Clairaut ve Lagrange Denklemleri. | Ders Kitabı 1(Bölüm 2) |
6 | Yüksek Mertebe Lineer Diferansiyel Denklemler: Sabit Katsayılı Homojen Diferansiyel Denklemler, Karakteristik Denklem, Lineer Homojen Denklemlerin Genel Çözümleri, Lineer Bağımsızlık ve Wronskian Determinantı.Karakteristik Denklemin Kompleks Kökleri, Reel Kökler, Tekrarlanan Kökler. Homojen Olmayan Denklemler. | Ders Kitabı 1(Bölüm 3) |
7 | Belirsiz Katsayılar Yöntemi | Ders Kitabı 1(Bölüm 4) |
8 | Ara Sınav 1 | |
9 | Parametrelerin Değişimi (Sabitin Değişimi- Lagrange) Yöntemi.Değişken Katsayılı Diferansiyel Denklemler : Euler Dif. Denklemi. | Ders Kitabı 1(Bölüm 4) |
10 | Bazı Özel İkinci Mertebe Diferansiyel Denklemleri: Bağımlı Değişkeni İçermeyen Diferansiyel Denklemler, Bağımsız Değişkeni İçermeyen Diferansiyel Denklemler. | Ders Kitabı 1(Bölüm 4) |
11 | İkinci Mertebe Lineer Diferansiyel Denlemlerin Serilerle Çözümleri: Kuvvet Serilerinin Kısa Tekrarı, Bir Adi Nokta Civarında Serilerle Çözüm. | Ders Kitabı 1(Bölüm 5) |
12 | Ara sınav 2 . Laplace transformasyonu, Laplace Transformasyonu’nun Tanımı , Özellikleri | Ders Kitabı 1(Bölüm 6) |
13 | Ters (İnvers) Laplace Dönüşümü, Sabit Katsayılı Lineer Dif. Denklemlerin Laplace Transformasyonu ile Çözümü | Ders Kitabı 1(Bölüm 6) |
14 | Birinci Mertebeden Lineer Diferansiyel Denklem Sistemleri: Yok etme ve Determinant Yöntemi. | Ders Kitabı 1(Bölüm 7) |
15 | Birinci Mertebeden Lineer Diferansiyel Denklem Sistemleri: Yok etme ve Determinant metodu. | Ders Kitabı 1(Bölüm 7) |
16 | Final |
Değerlendirme Sistemi
Etkinlikler | Sayı | Katkı Payı |
---|---|---|
Devam/Katılım | ||
Laboratuar | ||
Uygulama | ||
Arazi Çalışması | ||
Derse Özgü Staj | ||
Küçük Sınavlar/Stüdyo Kritiği | 1 | 20 |
Ödev | ||
Sunum/Jüri | ||
Projeler | ||
Seminer/Workshop | ||
Ara Sınavlar | 1 | 40 |
Final | 1 | 40 |
Dönem İçi Çalışmaların Başarı Notuna Katkısı | ||
Final Sınavının Başarı Notuna Katkısı | ||
TOPLAM | 100 |
AKTS İşyükü Tablosu
Etkinlikler | Sayı | Süresi (Saat) | Toplam İşyükü |
---|---|---|---|
Ders Saati | 14 | 4 | |
Laboratuar | |||
Uygulama | |||
Arazi Çalışması | |||
Sınıf Dışı Ders Çalışması | 14 | 5 | |
Derse Özgü Staj | |||
Ödev | |||
Küçük Sınavlar/Stüdyo Kritiği | 1 | 6 | |
Projeler | |||
Sunum / Seminer | |||
Ara Sınavlar (Sınav Süresi + Sınav Hazırlık Süresi) | 1 | 15 | |
Final (Sınav Süresi + Sınav Hazırlık Süresi) | 1 | 20 | |
Toplam İşyükü : | |||
Toplam İşyükü / 30(s) : | |||
AKTS Kredisi : |
Diğer Notlar | Yok |
---|