Ders Adı | Kodu | Yerel Kredi | AKTS | Ders (saat/hafta) | Uygulama (saat/hafta) | Laboratuar (saat/hafta) |
---|---|---|---|---|---|---|
Biyomedikal İşaret ve Görüntü İşleme | BLM5104 | 3 | 7.5 | 3 | 0 | 0 |
Önkoşullar | Yok |
---|
Yarıyıl | Bahar |
---|
Dersin Dili | Türkçe |
---|---|
Dersin Seviyesi | Yüksek Lisans |
Dersin Türü | Seçmeli @ Bilgisayar Mühendisliği ABD Bilgisayar Mühendisliği Yüksek Lisans Programı (Tezsiz) Seçmeli @ Bilgisayar Mühendisliği ABD Bilgisayar Mühendisliği Yüksek Lisans Programı Seçmeli @ Bilgisayar Mühendisliği ABD Bilgisayar Mühendisliği Doktora Programı |
Ders Kategorisi | Uzmanlık/Alan Dersleri |
Dersin Veriliş Şekli | Yüz yüze |
Dersi Sunan Akademik Birim | Bilgisayar Mühendisliği Bölümü |
---|---|
Dersin Koordinatörü | Gökhan Bilgin |
Dersi Veren(ler) | Gökhan Bilgin |
Asistan(lar)ı |
Dersin Amacı | Bu ders kapsamında temel olarak biyomedikal veriler üzerinde ileri sayısal işaret, görüntü işleme, örüntü tanıma ve makine öğrenmesi yöntemlerinin öğretilmesi amaçlanmaktadır. Dersin temel amacı öğrencilerin bu alandaki matematiksel, bilimsel ve hesapsal analiz yeteneklerinin arttırılmasıdır. Bu bağlamda ders içeriğinde biyomedikal verilerin elde edilmesi, özelliklerinin değerlendirilmesi, ön işleme adımlarının neden ve uygulamalarının öğretilmesi (gürültü giderimi, filtreleme, pekiştirme, boyut indirgeme vb…), özellik çıkarımı, modelleme, eğiticisiz ve eğiticili öğrenme konularının yansıra yarı-eğiticili, topluluk ve derin öğrenme konularına da değinilecektir. Ayrıca öğrencilerin hesapsal yeteneklerinin arttırılması için temel biyomedikal uygulamalar üzerinde Matlab ve Python tabanlı bireysel/grup projeleri yürütülecektir. |
---|---|
Dersin İçeriği | Biyomedikal işaret ve görüntülerin özellikleri; İşaret ve görüntü işlemede kullanılan dönüşüm yöntemleri; İşaret ve görüntülerde gürültü giderimi; İşaret ve görüntü filtreleme yöntemleri; İşaret ve görüntü filtreleme yöntemleri; Doğrusal ve doğrusal olmayan boyut indirgeme yöntemleri; İstatistiksel, şekilbilimsel ve uzamsal öznitelik çıkarım yöntemleri; İşaret ve görüntü işlemede eğiticili öğrenme yöntemleri; İşaret ve görüntü işlemede eğiticisiz öğrenme yöntemleri; Yarı-eğiticili, topluluk ve derin öğrenme yöntemleri. |
Ders Kitabı / Malzemesi / Önerilen Kaynaklar |
|
Opsiyonel Program Bileşenleri | Yok |
Ders Öğrenim Çıktıları
- Öğrencilere biyomedikal işaret ve görüntülerin orijini ve doğası hakkında teorik altyapı verilmiş olacaktır.
- Öğrencilere bilgisayar destekli teşhis ve analiz uygulamalarının temelleri ve biyomedikal işaret ve görüntü işleme yöntemlerinin değerlendirilmesi tanıtılmış olacaktır.
- Bilgisayar mühendisliği öğrencilerine, özellikle gelişen bu disiplinler arası alanda güçlü matematiksel ve algoritmik bilgiler kazandırılacaktır.
- Öğrencilere işaret ve görüntü işleme konularının yanı sıra örüntü tanıma ve makine öğrenmesi gibi konularda da öğrencilerin hesapsal ve bilimsel yetenekleri arttırılmaya çalışılacaktır.
- Öğrencilere çeşitli dönem içi ödevler verilerek ve bu konularda yayın oluşturmaları sağlanarak gerek matematik ve analitik gerekse bilimsel yazım yetenekleri arttırılmış olacaktır.
Ders Öğrenim Çıktısı & Program Çıktısı Matrisi
DÖÇ-1 | DÖÇ-2 | DÖÇ-3 | DÖÇ-4 | DÖÇ-5 | |
PÇ-1 | - | - | - | - | - |
PÇ-2 | - | - | - | - | - |
PÇ-3 | - | - | - | - | - |
PÇ-4 | - | - | - | - | - |
PÇ-5 | - | - | - | - | - |
PÇ-6 | - | - | - | - | - |
PÇ-7 | - | - | - | - | - |
PÇ-8 | - | - | - | - | - |
PÇ-9 | - | - | - | - | - |
PÇ-10 | - | - | - | - | - |
Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları
Hafta | Konular | Ön Hazırlık |
---|---|---|
1 | Biyomedikal işaret ve görüntülerin elde edilmesi ve karakteristikleri | Ders Kitabı Bölüm 1 |
2 | İşaretlerin istatistiksel karakteristiklerinin analizi (Momentler, güç, enformasyon, ilinti...) | Ders Kitabı Bölüm 2 |
3 | Sayısal işaret işleme temelleri, örnekleme, nicemleme | Ders Kitabı Bölüm 3 |
4 | Frekans analizi, Dönüşüm yöntemleri I: DFT, DCT, STFT | Ders Kitabı Bölüm 4 |
5 | Dönüşüm yöntemleri II: Dalgacık dönüşümü | Ders Kitabı Bölüm 5 |
6 | Görüntü işleme temelleri | Ders Kitabı Bölüm 6 |
7 | Görüntü işlemede gürültü giderimi, filtreleme ve pekiştirme yöntemleri | Ders Kitabı Bölüm7 |
8 | Ara Sınav 1 | |
9 | İşaret ve görüntülerin eğiticili öğrenme yöntemleriyle analizi I (Yapay Sinir Ağları I) | Ders Kitabı Bölüm 8 |
10 | Boyut azaltma ve doğrusal/doğrusal olmayan dönüşüm yöntemleri | Ders Kitabı Bölüm 9 |
11 | Biyomedikal işaret ve görüntüler için örüntü tanıma ve makine öğrenmesinin temelleri | Ders Kitabı Bölüm 10 |
12 | İşaret ve görüntülerin eğiticisiz öğrenme yöntemleriyle analizi | Ders Kitabı Bölüm 11 |
13 | İşaret ve görüntülerin eğiticili öğrenme yöntemleriyle analizi | Ders Kitabı Bölüm 12 |
14 | İşaret ve görüntülerin yarı-eğiticili, topluluk ve derin öğrenme yöntemleriyle analizi | Ders Kitabı Bölüm 13 |
15 | Final |
Değerlendirme Sistemi
Etkinlikler | Sayı | Katkı Payı |
---|---|---|
Devam/Katılım | ||
Laboratuar | ||
Uygulama | ||
Arazi Çalışması | ||
Derse Özgü Staj | ||
Küçük Sınavlar/Stüdyo Kritiği | ||
Ödev | 5 | 15 |
Sunum/Jüri | ||
Projeler | 1 | 25 |
Seminer/Workshop | ||
Ara Sınavlar | 1 | 20 |
Final | 1 | 40 |
Dönem İçi Çalışmaların Başarı Notuna Katkısı | ||
Final Sınavının Başarı Notuna Katkısı | ||
TOPLAM | 100 |
AKTS İşyükü Tablosu
Etkinlikler | Sayı | Süresi (Saat) | Toplam İşyükü |
---|---|---|---|
Ders Saati | 13 | 3 | |
Laboratuar | |||
Uygulama | |||
Arazi Çalışması | |||
Sınıf Dışı Ders Çalışması | |||
Derse Özgü Staj | |||
Ödev | 5 | 10 | |
Küçük Sınavlar/Stüdyo Kritiği | |||
Projeler | 1 | 120 | |
Sunum / Seminer | |||
Ara Sınavlar (Sınav Süresi + Sınav Hazırlık Süresi) | 1 | 10 | |
Final (Sınav Süresi + Sınav Hazırlık Süresi) | 1 | 10 | |
Toplam İşyükü : | |||
Toplam İşyükü / 30(s) : | |||
AKTS Kredisi : |
Diğer Notlar | Yok |
---|